Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data.

نویسندگان

  • Dan Fu
  • X Sunney Xie
چکیده

Hyperspectral stimulated Raman scattering (SRS) imaging has rapidly become an emerging tool for high content analyses of cell and tissue systems. The label-free nature of SRS imaging combined with its chemical specificity allows in situ and in vivo biochemical quantification at submicrometer resolution without sectioning and staining. Current hyperspectral SRS data analysis methods are based on either linear unmixing or multivariate analysis, which are not sensitive to small spectral variations and often provide obscure information on the cell composition. Here, we demonstrate a spectral phasor analysis method that allows fast and reliable cellular organelle segmentation of mammalian cells, without any a priori knowledge of their composition or basis spectra. We further show that, in combination with a branch-bound algorithm for optimal selection of a few wavenumbers, spectral phasor analysis provides a robust solution to label-free single cell analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.

Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition ...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging.

We demonstrate a method to increase the acquisition speed in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging while retaining the relevant spectral information. The method first determines the important spectral components of a sample from a hyper-spectral image over a small number of spatial points but a large number of spectral points covering the accessible spectral range a...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Hyperspectral image analysis for CARS, SRS, and Raman data

In this work, we have significantly enhanced the capabilities of the hyperspectral image analysis (HIA) first developed by Masia et al. 1 The HIA introduced a method to factorize the hyperspectral data into the product of component concentrations and spectra for quantitative analysis of the chemical composition of the sample. The enhancements shown here comprise (1) a spatial weighting to reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 86 9  شماره 

صفحات  -

تاریخ انتشار 2014